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Abstract
Saline stress has been the one of the biggest hurdles in achieving the demand and supply ratio of global population. To
combat the growing problem of soil salinity, advanced soil management and irrigation technology are used. However, they
are cost and energy intensive. Plant growth promoting rhizobacteria (PGPR) attained from saline soils can overcome the
detrimental effects of salt stress on plants. PGPR positively impact physiological functions of plants such as growth, yield
and overcome disease resistance. The complex and dynamic interface between microorganisms and plant roots is achieved
by various mechanisms like secretion of plant growth hormones, pigments and decrease of oxidative stress. Thus, PGPR can
be used as an alternative to improve yield of crops from saline lands. This review is an attempt to provide the current status
on the PGPR from salt inflicted soils and their application for growing crops in saline soils.
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Introduction
The world population was estimated approximately

7.8 billion people. Globally, this is projected to rise up to
9.7 billion by 2050. The drastic increase in world
population increased the demand of food products (Mesa-
Marín et al., 2019). The crop production per unit of land
cultivated is sluggish to meet the predicted demand for
food. Besides change in climate, loss of soil structure,
nutrient degradation, drought and soil salinity (Khan et
al., 2019b; Mukhtar et al., 2019) are the major factors
behind the decreased crop yields (Ma et al., 2019a).
Global warming, depletion of water resources (drought
stress) (Zafar-ul-Hye et al., 2019b), poor quality of
irrigation water, improper soil water-crop management
etc. lead to severe issue of saline soil (Mahpara et al.,
2019) (salt concentration more than 200 mM). Food and
Agricultural Organization (FAO), manifested a worldwide
loss of 50% land of total land mass by the year 2050.
Excess salt leads to the decreased plant growth and
deregulated metabolism (El-Ramady et al., 2019b). Free
radical generation (Mesa-Marín et al., 2018) such as

superoxide radical, hydrogen peroxide (H2O2) and singlet
oxygen, decrease in plant defensive enzymes, imbalance
in sodium hemostasis, decreased iron uptake, phenols and
other trace elements are the manifestations seen in the
saline stress (Korres et al., 2019; Tully et al., 2019). Soil
salinization process has been described in fig. 1.

In recent time, various approaches have been
employed to solve the salinity and acidity in soil (Acuña
Rodriguez et al., 2019; Costa et al., 2018; El-Ramady et
al., 2019a; Gangwar et al., 2020; Jo and Pak, 2019).
Development of salt-tolerant crops through breeding,
physical removal of salts from the surface of soil and
chemical treatment of soil are some of the techniques
established by scientists (Cuevas et al., 2019; Safeena
and Zakeel, 2019; Safikhani et al., 2018). These methods
have complexity in tools or techniques as presented in
fig. 1 (Gupta et al., 2018). Alternative methods for
retrieval of salt affected soils include phytoremediation
and bioremediation (Agrawal et al., 2018; Kumar and
Verma, 2019; Mishra et al., 2019). These large scale
organic farming methods use the halotolerant plants and
salt tolerant bacteria, respectively (Kumari, 2018; Singh*Author for correspondence : E-mail: asourirajan@gmail.com



et al., 2019c). Plant growth promoting rhizobacteria
(PGPR) are the symbiotic heterogenous bacteria which
are known as one of the beneficial root-associated
bacteria (Kenneth et al., 2018; Meena, 2018; Yasmeen
et al., 2019). The bacteria act as biofertilizers and recycle
the plant nutrients which leads to phytostimulation and
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phytoremediation (Ullah and Bano, 2019; Zhang et al.,
2018). These can be intracellular or extracellular.
Klebsiella, Pseudomonas, Rhizobium, Azospirillum,
Enterobacter, Serratia, Alcaligenes, Arthrobacter,
Azotobacter, Burkholderia and Bacillus are the bacterial
species encompassing plant growth promoting
rhizobacteria (Chennappa et al., 2018; Ipek et al., 2019;
Sarkar et al., 2018b; Sayyed et al., 2019b; Zhang et al.,
2018).  The bacteria can enter through root hair
(endophytic bacteria) or can reside on the root surface
(rhizosphere bacteria) and act as bio-organic manure
(Choudhary et al., 2019; Kumari et al., 2019; Vaishnav
et al., 2018; Vaishnav et al., 2019). They produce and
increase the concentration of siderophores
exopolysaccharides, (Paul et al., 2019) alter pH, modify
toxic metals, (Mousavi et al., 2018) solubilize phosphorus
(Kadmiri et al., 2018) and calcium, evacuate stress-
alleviating metabolites (1-aminocyclopropane-1-
carboxylic acid deaminase), (Bharti and Barnawal, 2019)
secrete indole-3-acetic acid (IAA) (Yousef, 2018),
cytokinin and gibberellins and provide resistance of
antibiotics as presented in fig. 2 (Barnawal et al., 2019;
Li and Liu, 2019; Saghafi et al., 2019a; Singh, 2018).

Inoculation with PGPR has been known to modulate
abiotic stress regulation via direct and indirect
mechanisms that induce systemic tolerance
(Govindasamy et al., 2018; Rani et al., 2018; Sagar et
al., 2019; Zaheer et al., 2019). In recent past, a large
number of PGPR have been identified attributing their
role in the rhizosphere as an ecosystem and their potential

Fig. 1: Process of soil salinization that leads to loss of
agriculture productivity.
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Fig. 2: A representative class of metabolites produced by plant growth-promoting
rhizobacteria (PGPR). * There are various other members of each class. Only
representative molecules have been shown in the diagram.
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as biofertilizer (Chandra et al., 2019;
Liang et al., 2018; Thennarasu et al.,
2019). Root-associated bacteria are
more tolerant to salt stress than soil
bacteria, since salinity stress is higher in
the rhizosphere due to depletion of water
by the plant root, resulting in a local
increase in both ionic strength and
osmolality (Dubey et al., 2020; Kumar
et al., 2019b). Salinity negatively affects
microbiological activity of soil by high
osmotic strength and toxic effects of
salts on microbial growth can occur, with
the exception of tolerant halophytic
bacteria (Jyothi et al., 2018). Therefore,
salt tolerant plant growth-promoting
bacteria, like Azotobacter chroococum,
Pseudomonas. aeruginosa PF23 and
Serratia marcescens can survive in such
harsh environments (Cabot et al., 2018;
Kumar et al., 2018b; Mishra et al., 2018).
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Soil salinity
Soil salinity affects extensive areas of land in both

developed as well as in developing countries (Yoo et al.,
2018). The agricultural intensification, together with
unfavorable natural conditions, has accelerated soil
salinity in several parts of the world (Arora and Dagar,
2019; Srivastava et al., 2019). With insufficiency of good
quality irrigation water and rising pressure of producing
more from every hectare of available arable land, the
poor-quality groundwater has been increasingly used for
irrigation. Worldwide farming utilizes approximately 70%
of ground water but its depletion lead to the poor-quality
water being utilized in farming (Dalin et al., 2019; Majeed
and Muhammad, 2019). Many more areas with good
quality aquifers are endangered with contamination as a
consequence of excessive withdrawals of groundwater.
Indiscriminate use of poor-quality waters in the absence
of proper soil water-crop management practices poses
grave risks to soil health and environment. Development
of salinity, sodicity, acidity, water-logging and toxicity
problems in soils not only deteriorates the quality and
quantity of produce and limits the choice of cultivable
crops, many a times the effects become so severe that
lands eventually go out of cultivation (Abod et al., 2019;
Osman, 2018). Salt affected lands occur over varied
geological formations, in all kinds of soils and under
different conditions of climate and human interventions
and accordingly, their extent, characteristics and response
to management are highly variable (Gregory et al., 2018;
Kumar et al., 2019a). For practical usage, salt-affected
lands have been identified as saline, alkali, sodic, (Hafeez)
saline-alkali (Kumar et al., 2018a) or saline sodic (Pankaj
et al., 2019; Shao et al., 2019). Saline soil has an excess
of soluble salt in the soil solution, the liquid located
between aggregates of soil (Etesami, 2018; Lamizadeh
et al., 2019). Sodic soil has too much sodium associated
with the negatively charged clay particles (Shahnaz and
Manjurul, 2018). Salinity occurs through natural or human-
induced processes that result in the accumulation of
dissolved salts in the soil water to an extent that inhibits
plant growth (Powrie, 2018; Saghafi et al., 2019b). High
salinity in soil induces ionic and osmotic stress, (Mukhtar
et al., 2018; Munns et al., 2020) resulting in growth
retardation through malfunctioning photosynthesis and ion
homeostasis (Daliakopoulos et al., 2016; Liu et al., 2019;
Majeed et al., 2019). Currently, 1,125 million hectares
area is salt affected, out of which salinity in 76 million
hectares is human-induced (Hossain, 2019; Sayyed et
al., 2019a).

On the other hand, when plant cells are exposed to
salinity mediated by high NaCl concentrations, the steady

states kinetics of ion transport for Na+ and C1- and other
ions, such as K+ and Ca2+ are disturbed (Bashandy et
al., 2019; Yang and Guo, 2018). It is generally accepted
that plant cells must maintain a high ratio of K+ and Na+

ions in their cytoplasm if they are to grow successfully in
saline environments (Wu, 2018; Yun et al., 2018). Salinity
affects physiology of plant through changes of the ionic
status in the cells (Bosnic et al., 2018; Parasuraman et
al., 2019). Thus, it is vital for the plant to re-establish
cellular ion homeostasis for metabolic functioning and
growth and to adapt to the saline environment (Ren et
al., 2018; Wu, 2018). Presently, it is widely assumed that
the death of plant cells exposed to saline conditions is
caused by a high ratio of Na+ and K+ ions in the cytoplasm,
which is due to drastic increases in the influx of Na+ ions
into the cells and in the efflux of K+ ions from the cells
(Rubio et al., 2020). Under saline conditions, the large
electrochemical Na+ gradient results in passive Na+

uptake into root cells (Selvakumar et al., 2018; Singh et
al., 2019b). The essential role of Ca2+ ions have been
extensively documented with respect to various cellular
functions that are associated with the growth and
development of plants (Parvin et al., 2019; VanWallendael
et al., 2019). In particular, regulation of membrane
functions is thought to be one of the most important roles
of Ca2+ ions in plant cells (DA WEI et al., 2019; Guo et
al., 2019). Ca2+ is known to have better effects on plants
under high-salinity conditions and also was known to
decrease low-affinity Na+ uptake (Sun and Zhou, 2018).
Various plant nutrients have their roles under saline
conditions (El-Ramady et al., 2018).
Paradigm of mitigation of salt stress: Recent
literature on the role of PGPRs

Global increase in soil salinization constitutes the most
devastating environmental threat for crop yield and food
quality (Rahman et al., 2019; Tyerman et al., 2019). Soil
salinity has been recognized worldwide as one of the
major limitation for crop production in arid and semiarid
regions (Dong et al., 2019; Ivushkin et al., 2019).
Groundwater continuously moves towards the cultivation
layer and the concentration of soluble salts increases due
to the recycling of poor-quality water for irrigation
(Machado and Serralheiro, 2017). Sodic and saline soil is
reducing the cultivable area for agriculture by 1-2% every
year, thereby reducing food production (Etesami and
Beattie, 2018; Hayes et al., 2019). The primary concern
regarding saline soil is its impact on plant growth (Hayes
et al., 2019). Excessive salt concentration (more than
200 mM) inhibits plant growth (Mukhtar et al., 2018;
Shahid et al., 2018) and affects many aspects of plant
metabolism, resulting in reduced growth and yield



(Chaowanaprasert et al.). Physical removal of salts from
the surface of soil or chemical treatment of soil is not
only expensive, but also impractical to vast areas for soil
reclamation purposes (Damodaran et al., 2019). Many
scientists have attempted to develop salt-tolerant crops
through breeding, but these efforts have met with limited
success due to the genetic and physiological complexity
of the salt tolerance traits (Seido et al., 2019; Tolba et
al., 2019) Thus, phytoremediation (i.e. using the
halotolerant plants) and bioremediation (using the salt
tolerant bacteria) are alternatives for reclamation of salt
affected soils on large scale (Lata and Gond, 2019;
Schillaci et al., 2019; Yilmaz and Kulaz, 2019). Dry
weight, wet weight, root length and shoot length was
increased by PGPR (Sulthana et al., 2018). The PGPR
in plant growth promotion have been covered by various
authors in literature; including Numan et al., (2018); Siyar
et al., (2018) and Abbas et al., (2019) (Abbas et al.,
2019); Prasad et al., (2019) (Prasad et al., 2019); Bilinski
et al., (2019) (Bilinski et al., 2019), Kashyap et al.,
(2019) (Kashyap et al., 2019), Bhatt et al., (2019) (Bhat
et al., 2019), Altaf et al., (2019) (Altaf et al.), Siyar et
al., (2019) (Siyar et al., 2019) and IAsif et al., (2019)
(Asif et al., 2019). In this review, we intended to include
the mechanism of PGPR’s, the types of PGPR’s, recent
research paradigms in PGPR’s and salinity, combination
treatment of PGPR’s with other agents and products etc.
The most recent literature findings demonstrating the role
of PGPR’s based on mechanism in cultivation of different
plants have been covered.

• Nitrogen fixation:
A study by Reginawanti et al., (2019) explored the

Azotobacter resistance (K4, S2 and S1) for sodium
chloride in tomato seedling. Results revealed that this
resistance was higher in the S2 and K4. Authors
established that the plausible effect was might be due to
the osmotic adjustment. Further addition of 2% glycerol
amplified this effect. Leaf number and root dry weight
was increased by this inoculation (Hindersah et al., 2019).

Another study by Noori et al., (2019) isolated
rhizobial and non-rhizobial drought and salinity tolerant
bacteria from the surface sterilized root nodules of alfalfa,
grown in saline soils and evaluated the effects of effective
isolates on plant growth under salt stress. They co-
inoculated the alfalfa plant with Klebsiella sp. A36, K.
cowanii A37 and rhizobial strain S. meliloti ARh29. The
results demonstrated that Klebsiella sp. A36, Kcowanii
A37 could deliver plant nitrogen and upsurge plant growth
indices without rhizobial bacteria and nitrogen (Noori et
al., 2018).

• Phosphorus-solubilization and siderophore
production:

Bacillus (SB1) and Halobacillus (SB2) isolated from
groundnut rhizosphere had shown the ability to overcome
the salt and metal stress (Banik et al., 2018). Mahmood
et al., (2019) isolated, screened and characterized
rhizosphere bacteria from the common ice-plant
Mesembryanthemum crystallinum L. A total of 80 out
of 152 strains displayed tolerance to soil salinity.
Streptomyces sp. PR-3 and Bacillus sp. PR-6 were
effective against soil salinity (< 1250 mM NaCl). The
soil salinity mitigation by Streptomyces sp. strain PR-3
was done through phosphorus solubilization whereas
siderophore production was shown by Bacillus sp. strain
PR-6 PR-3 and PR-6 showed IAA production. In addition,
authors established that these bacteria have the ability to
promote growth in the common ice-plant (Mahmood et
al., 2019). Shobhit and research group established a
comparative study of Bacillus sp. and Pseudomonas
sp. on wheat under saline conditions. Bacillus sp.
enhanced plant height (32.32%), root length (37.84%),
fresh weight (28.2%) and dry weight (15.51%). This
increase was more potent than the Pseudomonas sp.
(Vimal et al., 2018)..

The potential of Bacillus sp. has been escalated in
combination with various agents. Bacillus cerus in
combination with tryptophan was established to be more
potent in the growth of wheat (HASSAN12 et al., 2018).
The combination of PGPR’s, phosphate sources and
vermipost has been demonstrated to be useful in growth
and nutrient uptake by plants under saline stress (Khosravi
et al., 2018). Behzad et al., (2019) demonstrated
improved growth and salinity tolerance of the halophyte
Salicornia sp. by co-inoculation with endophytic and
rhizosphere bacteria. They evaluated drought tolerance
of salt–tolerant isolates, performed 1–
aminocyclopropane–1–carboxylate (ACC)–deaminase,
IAA production and phosphate solubilization assay etc.
E14, E221, R11, R218 and R21 were the endophytic and
rhizosphere isolates produced ACC deaminase. The E14
and R11 strains displayed significant inorganic
solubilization of phosphate and displayed IAA production
(2.9 and 3.9 gmL-1 respectively) under saline conditions.
Authors established that when halophyte Salicornia sp.
was co-inoculated with rhizosphere and endophytic
bacterial strains in 200 mM NaCl, the morphological
parameters of the halophyte Salicornia sp. exhibited
substantial results except for root length. Further, the
chlorophyll content was escalated as compared to control,
sodium content was decreased, potassium and potassium
to sodium ratio in plant aerial parts were increased.
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Authors concluded that endophytic and rhizosphere
isolates associated with the halophyte Salicornia sp. are
drought and salinity resistant and Staphylococcus
bacteria exhibited the high salt tolerance (Komaresofla
et al., 2019).

Sangeeta et al., (2019) reported the ACC deaminase
producing bacteria for the reduction of salt stress in Allium
sativum. These isolates were screened for their ability
to utilize ACC as nitrogen source on DF minimal salts
medium. Six strains were found to be positive as ACC
deaminase producing bacteria (strains ACC02, ACC04,
ACC06, ACC07, ACC011 and ACC012). Two isolates
ACC02 (Aneurinibacillus aneurinilyticus) strain
AIOA1 and ACC06 (Paenibacillus sp. strain
SG_AIOA2) indicated higher ACC deaminase activity
as compared to other selected ACC deaminase producers
(1677 and 1589 nmol -ketobutyrate mg protein-1 h-1,
respectively). The bacteria converted nitrogen source
ACC into -ketobutyrate. Further maximum solubilization
of phosphate was shown by ACC02 (86.25mg/L). The
generation of organic acids lowered the pH. These potent
ACC deaminase producers were assessed for root growth
promotion by pot experiments. The research done with
sterilized French beans (Phaseolus vulgaris L.) variety
(AkraKomal) seeds found that consortia (ACC02+
ACC06) treated seeds displayed significant increase in
length and fresh weight of roots and shoots as well in
chlorophyll content as compared to uninoculated (control)
seeds as well as individually bioprimed seeds (Pandey
and Gupta, 2019).

Muhammad et al., (2019) documented effects of
W10 (Serratia ficaria), W14 (Pesudomonas
fluorescens) and 6K on production of wheat under saline
situations. The treatment design consisted of control,
W10, W14, 6K, W14 × W10, W14 × 6K, W10 × 6K and

W14 × W10× 6K. Three soil salinity levels were
considered: 3 dS m-1, 6 dS m-1 and 9 dS m-1. The best
results on number of spikelets (14.93), root length (11
cm), shoot length, (75.5 cm), dry shoot weight (1.13 g)
and dry root weight (0.52 g) at EC 3 dS m-1 were found
in W14 × W10 × 6K. Further the same design produced
maximum number of grains, maximum biological yield
(200.19 per pot at EC dS m-1) and maximum number of
tillers (4.73/plant). The inoculation lead to the increase in
nitrogen, phosphorus and potassium. ACC-deaminase was
concluded to be the reason behind increased production
of the wheat (Zafar-ul-Hye et al., 2019a).

• Multiple cascades: Antioxidant activities, osmotic
balance, IAA and ACC production:

Nizar et al., (2019) characterized native bacteria
from the saline rhizosphere of Sulla carnosa and
established rhizobacteria isolates which escalate the salt
tolerance of Sulla sp. Acinetobacter sp. (Br3),
Pseudomonas putida (Br18) and Curtobacterium sp.
(Br20) were explored as PGP’s. Salt tolerance capacity
and plant growth promoting ability were detected. Isolation
of 26 rhizobacterial isolates was followed by microscopic
examination and detection of salt tolerance capacity and
plant growth promoting abilities. The study established
that high salt concentrations lead to the increased proline,
total soluble sugar content and cell membrane injury. Plant
growth promoting microbial isolates demonstrated
escalation in Ascorbate peroxidase (APX), superoxide
dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GPX) and antioxidative enzymes under saline
environment (Fig. 3) (Hmaeid et al., 2019). The results
suggested increased biomass and potassium levels as well
as reduced malondialdehyde (MDA) and leakage of
electrolyte. Compatible solutes were suggested to reduce
the high osmolarity stress. Also, Curtobacterium albidum

Fig. 3: Structures of Glutathione peroxidase, ascorbate peroxidase, superoxide
dismutase and proline produced by PGPR.

strain SRV4 and Pseudomonas sp. UW4
had shown plant growth promoting
potential in rice and tomato plants in
previous studies (Orozco-Mosqueda et
al., 2019; Vimal et al., 2019). In another
study, Singh et al. explored the native
sunflower ACCd producing PGPR to
induce the salt stress tolerance in
Helianthus annuus L. and evaluated
the physiological and biochemical
variations occurring in saline conditions.
The APX assay, superoxide dismutase
(SOD) assay and proline estimation were
performed, with MDA determination.
Pseudomonas otitidis Rhizo SF 7
(IC50=13.44) and Acinetobacter
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calcoaceticus RhizoSF 9  (IC50=11.26) showed the
maximum salt tolerance. Further PGPR’s increased plant
height, shoot fresh weight, dry weight and total chlorophyll
under the stress conditions. Authors established that proline
content had been augmented in ACCd generating PGPR
treated seeds. The increase in APX activity and maximum
SOD enzyme activity in Rhizo SF 7 treated sunflower
with stress was 0.5 fold and 23.84 U min -1 mg-1

respectively. When compared to control, MDA content
was decreased in Rhizo SF 7 and Rhizo SF 9 treated
seedlings under salt stress (Singh et al., 2019a).

Izzeddine et al., (2019) evaluated the capacity of
Pseudomonas plecoglossicida strain Pp20 to mitigate
the damages on maize roots caused by salt and aluminum.
Pp20 has shown its ability to grow at varied NaCl
concentrations from 50-600 Mm and fresh mass and dry
mass were increased to 48% and 102%, respectively.
The results revealed a positive impact on stem weight,
seminal roots, lateral roots and root length. Additionally,
PGPR treatment also increased the concentration of
chlorophyll (32%) and carbohydrate (93%). The study
attributed that this Pseudomonas plecoglossicida strain
Pp20 generated ACC deaminase and damaged the plant
hormone ethylene precursor 1-aminocyclopropane-1-
carboxylic acid (ACC). Furthermore, the production of
IAA had been established (Zerrouk et al., 2019).
Bioaugmentation of microbial strains may help as a favored
strategy for refining phytoremediation of metal polluted
saline soils.

Ying et al., (2019) studied and reported the impact
of Pseudomonas libanensis  TR1 on Helianthus
annuus. P. libanensis exhibiting high resistance against
saline stress (8%) (Ma et al., 2019b). Bacillus SB1 and
HalobacillusSB2 strains were explored in various
combinations with metals (Zinc, aluminium and lead) in
the growth of Arachis hypogaea L. under saline stress
by Avishek et al., (Banik et al., 2018). Various pigments
were isolated from the both strains. Methyl 5-
oxopyrrolidine-2-carboxylate, Trideca-1, 12-dien-3-one,
2-Acetamido-3-cyanopropanoic acid, Ethyl 2-isopropyl-
2,3-dihydrofuran-3-carboxylate, Methyl undec-10-ynoate,
1-(3,4-Dihydropyridin-1(2H)-yl)ethan-1-one, Methyl (E)-
tetradec-10-enoate were isolated from SB2. SB1 was
responsible for the generation of pentadecanoic acid, bis
(2-ethylhexyl) phthalate and squalene (Fig. 4).

Jacquelinne et al., (2019) explored ACCd-producing
rhizobacteria from Pseudomonas quadrangularis under
saline stress and studied the effects of PGPR on wheat
seedlings (Triticum aestivum L.). The pot experiment
was carried under the green house conditions and it was
established that the isolates from the P. quadrangularis
had ACCd activity. Conventionally, the ACCd producing
isolates (0.83-3.32 mol -ketobutyrate mg-1h-1) were
belonging to the Serratia and Klebsiella. These isolates
produced auxins (20.3 to 41.0 gmL-1) and siderophores.
Additionally, inoculation of Klebsiella isolates (8LJA and
27IJA) with wheat seedlings, the biomass content and
SOD activity in roots were escalated (45-62% and 18-

Fig. 4: Chemical structures of various pigments isolated from the SB1 and SB2.
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35% respectively) with and without
saline stress conditions (Acuña et al.,
2019). However, Klebsiella IG3 strain
had already been established as a growth
promoter in the Avena sativa seedlings
by Swapnil and co-workers (Sapre et
al., 2018).

Sang et al., (2019) reported the role
of Leclercia adecarboxylata MO1 in
Solanum lycopersicum L. growth and
salt stress tolerance by endogenous
secondary metabolites regulation. Under
saline stress conditions, L.
adecarboxylata  MO1 treatment
increased the shoot weight and length
(70.71% and 39.83% respectively), root
length and weight (21.38% and 82.72%
respectively) and diameter of stem
(21.04%). Further, MO1 treatment
leads to the increased chlorophyll stress-
responsive endogenous ABA. Authors
reported the escalation in glucose
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(17.57%), fructose (19.9%), sucrose (34.2%), citric acid
(47.48%) and malic acid (52.19%) in MO1 treated
Solanum lycopersicum L. under salt stress conditions
(Kang et al., 2019). In another study, Muhammad et al.,
(2019) described the efficiency of salt-tolerant plant
growth-promoting endophytes (PGPEs) Kocuria
rhizophila: KF875448 (14ASP) and Cronobacter
sakazakii: EF059843 (OF115), ACC deaminase
production, role of osmolytes and antioxidant enzymatic
activity on the development of Triticum aestivum L. plants
(Pasban 90 and Khirman) under several saline conditions.
Siderophores were produced after inoculation of both
strains. Under salt stress, chlorophyll content, root length,
fresh biomass, leaf water potential, shoot length, dry
biomass of Khirman and Pasban 90 were escalated by
K. rhizophila and C. sakazakii. Further the inoculation
showed increase in the SOD and CAT antioxidant
activities, proline content, K+, Mg2+ and Ca2+ contents in
the shoots and decrease in shoot Na+ concentration (Afridi
et al., 2019).

Mitra et al., (2019) showed that the growth and better
yield of barley by inoculation with Pseudomonas
fluorescens (B10, B2-10, B2-11 and B4-6) under saline
conditions. Under saline stress, there was an increase in
the plant height, grain yield, spike length, MGW, number
of spikes, grains per spike, weight of spike and, length of
peduncle when inoculated with the PGPR. IAA and ACC
deaminase were produced by P. fluorescens strains
(Azadikhah et al., 2019). P. fluorescens showed positive
nutrient dynamics in production of melons under saline
stress (Martínez et al., 2019; Safari et al., 2018). Anumita
et al., (2018) studied halotolerant Enterobacter sp. strain
P53 inoculated with rice seedlings. The bacteria disclosed
ACC deaminase and produced IAA, HCN, siderophore
and antioxidant activity under salt stress (Hussain et al.,
2018; Sarkar et al., 2018a). Faiza et al., (2018) showed
the S. fruticose in saline conditions with various PGPRs.
S. jettensis F-11, F-12, S. arlettae F-71, B. marisflavi
F-87, H. nanhaiensis  F-81, Z. flava  F-9 and E.
mexicanum F-35 were found to increase the root and
shoot growth along with various plant growth
enhancement factors. The mechanistic studies revealed
the production of ACC deaminase, auxin, biofilm and anti-
oxidant activity (Aslam and Ali, 2018).

• Volatile organic compounds (VOCs):
Reja et al., (2019) investigated the effects of diverse

levels of salt stress along with the introduction of bacterial
growth stimulus on the amount of essential oil composition
in Rosmarinus officinalis. The percentage of essential
oils was directly proportional to the salinity either alone
or with PGPR inoculation treatments till the saline

condition of 10 g/L NaCl. Thereafter, it was moderated
with additional upsurges in salt levels in treatments without
using PGPR. The essential oil content was constant in
treated with PGPR. Authors suggested that phellandrene
(Fig. 5) was responsible for the activity (Bidgoli et al.,
2019).

• Exo-polysaccharides production:
Various bacterial isolates yielding exopolysaccharides

have been characterized. Faranak et al., (2019) studied
Citrobacter freundii and SiO2 nanoparticles on Solanum
lycopersicum L. under saline stress. An increase in proline
content, biomass, peroxidase and superoxide dismutase
was established. Production of EPS lead to the increased
development of biofilm which in turn increased the
preservation of moisture and aggregation of soil (Isfahani
et al., 2019). In addition, Alla et al., (2018) suggested
that Pseudomonas anguilliseptica SAW 24lead to the
development of biofilm and production of
exopolysaccharides in Vicia faba L. under saline stress.
There was an increase in plant height, fresh weight and
dry weight (Mohammed, 2018).
Meta-analysis studies

The meta-analysis by Pan et al. on 561 studies was
conducted on salt-sensitive plants (SSP) and salt-tolerant
plants (STP). There was an escalation in the levels of
chlorophyll and carotenoid and photosynthetic rate in both
SSP and STP under saline stress. This was related to the
antioxidant effect of the PGPR under stress conditions.
Further, the maintenance of ion homeostasis and osmotic
balance were established. This was proposed by root
structure modification and nutrient cycling acceleration,
root nutrient absorption capacity elevation and firming
Na+ detoxification capacity have been seen to increase
the biomass (Pan et al., 2019).
Combination treatment

Aneela et al., (2019) researched the combination of
salicylic acid (SA) and PGPR for more growth of
chickpea. Phosphorus and nitrogen content were
escalated by this SA+PGPR combination. There were
positive results in the shoot and root length and numbers

Fig. 5: Chemical structures of phellandrene.
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of nodules (Riaz et al., 2019). Another study by Farhad
et al (2019), demonstrated the use of Pseudomonas sp.
rhizobacteria in increasing the Mn2+ and Cl- in Pista
ciavera L. under saline stress. Pot experiment was carried
out to check the IAA and siderophore production,
phosphorus and zinc solubility, ACC deaminase activity
and hydrogen cyanide (HCN). Under saline stress (2000
mg NaCl kg-1), inoculation of pistachio seedlings with the
Pseudomonas sp. improved the dry weight of shoot and
root. Further uptake of Mn2+ was increased under the
co-inoculation of the pistachio with the PGPR-Mn.
PGPR-Mn effects were more pronounced and escalated
the levels of organic matter bound-Mn2+, carbonate bound-
Mn2+ Water-soluble plus exchangeable-Mn2+

diethylenetriaminepentaacetic acid (Dtpa-extractable)
Mn2+ and total chlorophyll content and decreasing the
iron–manganese oxide–bound (FeMnOX) and residual
Mn content etc. then Mn2+ alone (Atajan et al., 2019).

In addition, Raheleh et al., (2019) evaluated the
effects of Azospirillum lipoferum and Piriformospora
indica on Sesamum indicum L. under salt stress. Authors
carried out the antioxidant enzyme assays, checked the
lipid peroxidation and determined the content of total
water, proline, chlorophyll, total phenols and flavonoids,
sesamin and sesamolin, oil, mineral nutrients etc. The
results established under saline stress (120mM NaCl)
indicated a significant increase in the SOD, CAT and
APX activities when sesame was inoculated with single
or combined PGPR’s (Azospirillum lipoferum and
Piriformospora indica. Proline content was more
pronounced in Al-inoculation (120 mM NaCl; 311.66 mg-1

FW) whereas electrolyte leakage was least in co-
inoculated plants. Azospirillum lipoferum and
Piriformospora indica lead to the 61.58% to 74.12%
rise in reserved water content, maximum photochemical
quantum yield of PSII (Fv/Fm) = 24.69% in 120mM NaCl
condition. Further highest phenolic content (30.82 mg g-1

DW), flavonoid content (10.75 mg g-1 DW),  sesamin
(5327.17 ppm) and sesamolin (3404.83 ppm) was found
when inoculated under 80 mM NaCl in the presence of
Azospirillum lipoferum and Piriformospora indica
(Khademian et al., 2019).

Sivagnanam et al., (2019) demonstrated role of
Rhodotorula mucilaginosa  CAM4 in modifying
aluminum, salinity and drought stress in Lactuca sativa
growth. They formulated the powder of PGPR with
combination of sawdust, molasses (5% w/w) and PEG
(1% w/w). The activity was increased to about 1.34-
3.57 fold for CAT, 1.58-5.16 fold FOR SOD and 1.61-
4.78 fold for proline oxidase (POX) in comparison with
both abiotic stressed and uninoculated control plants.

Further, in comparison to the uninoculated abiotic stressed
plants, lettuce plants treated with different abiotic stresses
formulated strain CAM4 had significantly decreased the
proline concentration (50-61%) and MDA (Silambarasan
et al., 2019). Similarly, Sankalp et al., (2019) (Misra et
al., 2019) demonstrated the role of Jeotgalicoccus
huakuii NBRI 13E in the rhizosphere of tomato, maize
and okra under salt stress. Jeotgalicoccus huakuii NBRI
13E had shown a positive activity for the carotenoid
content, phosphorus solubilization, formation of biofilm,
total chlorophyll content, EPS, IAA and ACC deaminase
levels and total soluble sugar content etc. In comparison
to the control PGPR inoculation offered an increase in
shoot length, fresh weight/dry weight of plant and root
length. The study concluded that combination of
Jeotgalicoccushuakuii NBRI 13E and 50% NPK
fertilizer under salt stress is an effective choice for
improving crop productivity.

Rabba et al., (2019) studied Bacillus subtilis with
or without the mycorrhizal fungus Rhizophagus
intraradices on S. carnosa. Production of IAA was
established the reason behind the efficiency of B. subtilis
in decreasing the salt induced stress. The combination
improved the quality of soil and activities of soil enzymes
such as urease, alkaline phosphatase, -glucosidase and
dehydrogenase and modulation of C:N:P stoichiometry
(Hidri et al., 2019).

Rhizobium strains had been found to produce ACC-
deaminase, IAA and mineral-phosphate solubilizing in
Brassica napus L under salt stress (Saghafi et al., 2018).
Further in a combination study, Josiane et al., (2018)
coinoculated maize with Azospirillum brasilense (Ab-
V5 and Ab-V6) and Rhizobium tropici (CIAT 899) under
saline stress. The combination of Ab-V6+CIAT 899 had
been found to be most effective under saline stress, while
Ab-V5 was unable to display the salt tolerance. Proline
content and MDA was decreased whereas the
antioxidant enzymes were upregulated. The mechanistic
interventions revealed that the co-inoculation had a
negative effect on PR1, prp2, prp4, hsp70 and a positive
effect on APX1, CAT1, SOD2 and SOD4 in leaves and
APX2 in the roots (Fukami et al., 2018). In addition,
Nasim and research group studied the PGPR’s and kinetin
on Phaseolus mungo under saline stress. There was an
enhancement in LRWC, chlorophyll content, seed yield,
shoot growth, biomass production and root growth of
Phaseolus mungo treated with kinetin and/or H-PGPR
under saline stress. Further electrolyte leakage was
decreased under saline stress on the treatment of kinetin
and/or H-PGPR (Yasin et al., 2018b). The combination
treatment of PGPR’s with various agents are presented
in fig. 6.
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Mechanistic studies at molecular level
Maryam et al., (2019) studied transcriptional

responses of wheat roots inoculated with Arthrobacter
nitroguajacolicus under salt stress. Authors established
an increase in root and shoot mass and gain of iron,
nitrogen, phosphorus and potassium. The studies revealed
that there was a decrease in the sodium absorption and
level of ethylene which was attributed to the increased
ACC deaminase levels in wheat. Cytochrome P450s,
ascorbate peroxidase (APX), Nicotianamine synthase
gene, oligopeptide transporters (OPTs), ATP binding
cassette (ABC) transporters, sugar/inositol transporter,
ATPase, ion transporters were found to be upregulated
(Safdarian et al., 2019). A. nitroguajacolicus AK1 was also
established to alleviate the salt stress by expressing
GmST1 and GmLAX3 genes in soybean (Khan et al.,
2019a).

Szymañska et al., (2019) studied the biochemical and
growth parameters and expression levels of RSH genes
ISE12 by P. stutzeri in B. napus under saline stress
conditions. Further, high and low esterified
homogalacturonan (HG) levels had also been explored.
Biochemical (germination percentage and germination
index) and growth parameters (leaf numbers, root length,
chlorophyll content, hypocotyls length and stem length,
fresh weight and dry weight) were escalated. RSH1 and
RSH3 gene expression in B. napus  organs were
upregulated by the P. stutzeri via the antioxidant activity.
There was an increase in lignin, suberin, glutathione and
low methyl esterified HGs (Szymañska et al., 2019). The
research group also established bacterial microbiome of
root-associated endophytes of Salicornia europaea

under saline stress. Bacteria belonging
to the Fibrobacteres, Deltaprote-
obacteria, Acidobacteria, Verrucomicro-
bia and Caldithrix could be explored for
the mitigation of saline stress
(Szymañska et al., 2018).

Tamoor et al., (2019) researched
IAA-Deficient Mutants of
Pseudomonas moraviensis on wheat
in saline conditions. They studied
chlorophyll content, superoxide
dismutase activity, peroxidase activity,
transposon mutagenesis, salt tolerance
potential, phytohormones, ABA and
IAA. The results showed a decrease in
pH (10%) in presence of P. moraviensis
mutants (P.M-1 and P.M-3) under saline
stress. In comparison to P. moraviensis
(P.M-1 and P.M-3) alone, combination

Fig. 6: Microbial consortia and combination treatment of plant growth-promoting
rhizobacteria (PGPR) with various agents.
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of P. moraviensis (P.M-1 and P.M-3) and tryptophan
displayed (compared to control) 17% decrease in sodium
content, 47% increase in potassium content, 47-51
increase in plant height, 70% increase in proline content,
38% increase in seed number, 16% increase in seed
weight. The combination also improved the organic matter
in saline soil (Ul-Hassan and Bano, 2019).

Chakraborty et al., (2019) put forth the insight into
the biochemical retorts of wheat plants primed with
Ochrobactrum pseudogrignonense under saline stress.
The study revealed an increase in the peroxidase,
glutathione reductase, ascorbate peroxidase and catalase
under saline stress. Authors performed microarray
investigation. Ochrobactrum pseudogrignonense lead
to the downregulation of 282 genes (salt stress sensitive
genes, ascorbate peroxidase and lipid transfer proteins
etc.) and upregulation of 6022 genes (including
peroxidase, chitinase, phenylalanine ammonia lyase,
histone H2B and glucanase) under saline stress (200 mM
NaCl) (Chakraborty et al., 2019).

Yachana et al., (2018) established green mechanism
of PGPR-mediated stress handling. Bacillus pumilus and
Pseudomanas pseudoalcaligene were explored in the
defense-related pathogenesis-related protein induction.
These PGPR’s induced stress-related gene RAB18 and
catalase for combating saline stress. Further authors
concluded that these PGPR’s are ideal for the regulation
of sugar concentrations in plants as well as management
of saline stress (Jha and Subramanian, 2018). Further,
Ansari et al., (2019) also established the positive role of
Bacillus pumilus for the removal of saline stress in wheat.
Authors found that Bacillus pumilus increased the
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antioxidant potential of MDA, SOD, CAT and GR under
saline conditions. The FAB10 strain also escalated the
biofilm production, proline content, photosynthesis rate,
efficiency of water use etc (Ansari et al., 2019).

Firoz et al., (2018) explored Brevibacterium sp.
FAB3 in wheat under saline stress. The mechanistic
interventions revealed the production of IAA, siderophore,
solubilization of phosphate, HCN and ammonia (Ansari
and Ahmad, 2018).

Chatterjee et al., (2018) studied Brevibacterium
linens RS16 in Oryza sativa under saline stress. The
study showed the emission of foliage LOX, decanal,
heptanal, nonanal, octanal, mono- and sesquiterpenes and
volatile compounds, generation of ROS, reduced sodium
ion uptake, escalation in leaf photochemical action and
high level of Fv/Fm (Chatterjee et al., 2018).

Nasim et al., (2018) demonstrated the positive role
of Bacillus fortis strain SSB21 in growth/generation of
shoot and root length, chlorophyll content, protein content
etc. of Capsicum annum L. under saline stress. On
inoculation of plant and bacteria various stress related
genes (CAPIP2, CaKR1, CaOSM1 and CAChi2) were
upregulated. Further, the inoculation of Bacillus fortis
strain SSB21 lead to an increase in proline biosynthesis,
decrease in ROS, ethylene and lipid peroxidation (Yasin
et al., 2018a).

Al-sayed et al., (2018) demonstrated the antioxidant
potential of Bacillus subtilis (BERA 71) in chickpea
plants under saline stress. B. subtilis-inoculated plants
improved membrane stability under saline conditions via
suppression of ROS generation and lipid peroxidation as
well as the increased proline content (Abd_Allah et al.,
2018). Chakraborty et al., (2018) studied Bacillus
safensis (W10) to alleviate the saline stress in wheat
plants. The genes for metallothionines, rubisco, expansins,

precurser of S-adenosylmethionine decarboxylase,
Sulphur rich thionin-like proteins etc. were upregulated
(Chakraborty et al., 2018). Halophiles have been isolated
from several habitats worldwide and genome of some
halophiles like Halobacillus trueperi  has been
sequenced (Gupta et al., 2019). The genome analysis
can reveal the PGPR potential of the natural halophilic
bacteria for application in agriculture of saline lands.

Conclusions
The increase in population has also amplified the

demand of food and hence agriculture productivity. The
saline stress has been one of the topmost problems to
achieve the required production of agriculture crops.
PGPR’s confers a stable and reliable method to target
this problem and production of necessary crop yield.
Microbes that have PGPR activities can enhance plant
growth, speed up seed germination, improve seedling
emergence and protect plants from the deleterious effects
of some environmental stresses including drought, salt
and phytopathogens. Salt-tolerant rhizobacteria can play
an important role in alleviating soil-salinity stress during
plant growth. There has been extensive research in this
field. Pseudomonas and Bacillus species have been the
most explored class of PGPR’s. Various others PGPR’s
have been explored (Fig. 7). PGPR has a great future
prospective in the era of improving saline stress and
agriculture productivity. There is a need of effective tools
and techniques to identify the soil salinity and education
to farmers about the PGPR’s to improve the crop
production. In general, the yield and growth of stress
tolerant varieties of crops in presence of PGPR has been
increased as compared to normal crop yield. Therefore,
microbial inoculation to alleviate stresses and enhance
yield in plants could be utilized as a cost effective
environmental friendly option, potentially available in a

Fig. 7: Major group of Plant growth-promoting rhizobacteria (PGPR).

shorter time frame.
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